
Mathematics and Numeracy in Kindergarten

Becoming numerate and using numeracy

Whole Number

1	2	3	4	5	6	7	8	9	10
H	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Tens Frame

- Producing number names
- Counting items
- Numeral recognition and identification
- Understanding place value
- Understanding decimal place value

K - 30 forwards and backwards

1 - 100

2 - 1000

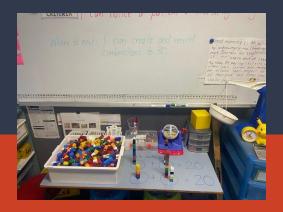
Early Number & Counting

Addition and Subtraction

Figurative

Counting on

Counting back


Flexible to 10

Flexible with two-digit numbers

Flexible with three-digit numbers and beyond

Ten Differentiated Activities

Addition & Subtraction

Addition and Subtraction Strategies

Counts on using ones	Bridging to the decade	Friends of and to ten	Using doubles		
Student counts on by ones for numbers of any size (including two-digit numbers) will use fingers or draw fence posts	Students bridge to ten by breaking up the second number. e.g. 17 + 5; 17 and 3 is 20 then add two more makes 22	Students combine numbers that add to 10 e.g. 4+7+8+6+3+1; group 4 and 6, 7 and 3 first	And the second s		
Counting on	Counting back	Using number facts	Jump strategy		
Students count on from the larger number to find the total of two numbers e.g. 14 + 7, "I started with 14 and then count on seven more" 14, 15, 16, 17, 18, 19, 20,	number remaining	students use related addition and subtraction number facts to at least 20 e.g. 15 + 3 = 18; so 18 - 15 = 3 these are called 'Turn Around Facts'	Students place the first number on an empty number line and then counts forward or backwards firstly by tens and then by ones to perform a calculation		
Split Strategy	Compensation strategy	Using patterns to extend number facts	Bridging the decades		
Students separate the tens from the units and add or subtract each separately before combining to obtain the final answer e.g. 46 + 35 = 40 + 6 + 30 + 3 = 40 + 30 + 6 + 3 = 70 + 9 = 79	number that is close to the decade to make the calculation simpler.	between calculations of smaller and larger numbers, using an easier sum as a starting place for finding a solution. e.g. 5 – 2 = 3, so 500 – 200 is	This strategy is similar to using a split strategy, instead of splitting both numbers, students keep on number whole and bridge to the decade first. e.g. 34 + 26; 34 + 6 = 40, 40 + 20 = 60 It is a reversal of jump but is only used when the 'ones' add to a ten		
Forming multiples	Inverse operations	Partitioning numbers	Formal algorithm		
Student change the order of addends (numbers) to form multiples of ten or other decades. e.g. 16 + 8 + 4; add 16 and 4 first	Students check solutions by using inverse operations. e.g. 50- 27= 23, so, 23+ 27 = 50	students can expand numbers into standard and non-standard forms to make addition or subtraction easier. e.g. 500 + 670: 570 = 500 + 170, so 500 + 670 = 500+ 500 = 1000+ 170=	Deep understanding of previous strategies and flexible skills in applying them should be gained before students are encouraged to use algorithms. When using algorithms, students should use mental strategies to estimate answer		

Multiplication and Division Strategies

Model equal groups	Perceptual counting and sharing	Rhythmic counting	Skip counting	
two groups of three	Uses visual markers to represent items and groups	1, 2, 3, 4, 5, 6, 7, 8, 9	3, 6, 9, 12 May need visible items	
Forms arrays of equal row	rs Figurative-multiple count	Uses repeated addition for multiplication	Uses repeated subtraction for division	
	Uses visual markers to show groups 5 5 5 5 1 2 3	5 groups of 4 is the same as 4+4+4+4+0 Or For 3 x 4 3 + 3 is 6, 6 + 3 is 9, 9 + 3 is	25 ÷ 5 = 25 - 5 = 20 (one) - 5 = 15 (two) - 5 = 10 (three) - 5 = 5 (four) - 5 = 0 (five)	
Uses a double count to coordinate composite units	Uses doubling and repeated doubling	Uses halving and repeated halving for 2, 4 and 8	Uses inverse operations	
Counts by the number in each group while counting the number of groups e.g. "How many three in 18?" 3 is 1, 6 is 2.9 is 318 is 6	again (28) then double again (56)	36+ 4: halve 36 (gives 18) then halve again (equals 9)	25 + 5 is the same as 5 <u>x.2</u> = 25 so the answer is 5	
Uses known facts to work out unknown	Uses relationships between facts	Uses place value concepts	Factorises the multiple o	
5 x 7 = 35 so 6 x 7 is 7 more than 35	Multiples for 6 are double the facts for 3	3 x 20 is the same as 3 x 2 tens = 6 tens= 60	3 x 20 is the same as 3 x 2 x 10= 6 x	
Model commutative property	Multiplying the tens then the units	Model and apply associative property	Factorising the larger number	
3 groups of 2 is the same as 2 groups of 3	7 x 19 is the same as 7 tens plus 7 nines is 70+63= 133	2 x 3 x 5= 2 x 5 x 3= 10 x 3= 30	18 x 5= 9 x 2 x 5= 9 x 10= 90	
	Stag	e 3		
Uses an area model	Uses a formal algorithm	Uses extended form (long multiplication)	Uses estimation	
Solving 27 x 8 20 7	432 x	5 2 1 x 2 2	32 x 253 will be about, but more than 30 x 250	
8 160 56	2160	1 0 4 2 1 0 4 2 0		
160+56=216	3	11462		
Recognises grouping symbols	Applies order of operations			
5 + (2 x 3) = 5 + 6 = 11	32 + (2 x 4) = 32 + 8= 4 (grouping symbols first)			

Multiplication and Division

Progression of Multiplication

Download the video

Download the closed caption video

Progression of Division

Fractions and Decimals

Quotative division is When dividing a number into groups of. Want we want to know = how many groups. Partitive division is When dividing a number into a known number of groups. What we want to know = how many is in each group.

Forming equal groups

Perceptual multiples (skip counting)

Figurative (imagined units)

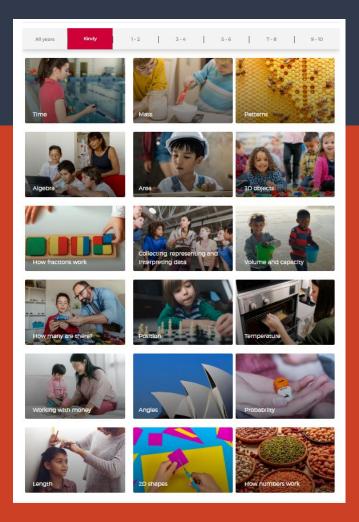
Repeated abstract composite units

Coordinating composite units (partitive and quotative)

Flexible for multiplication and division

Flexible number properties

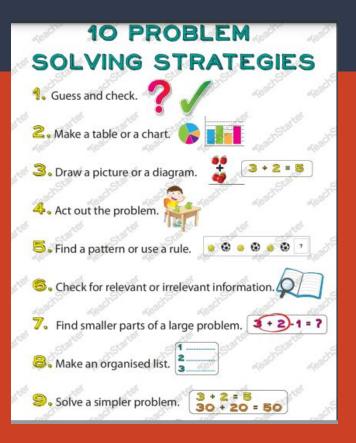
Fractions: The Meaning, Equivalence, & Comparison



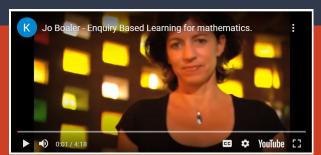
Applying Numeracy

Everyday maths

Maths is used every day in almost everything we do. Parents and carers can support their child's mathematical skills and understanding with these fun, practical, and creative activities.



Numeracy in Literature



Problem Solving Strategies

Walker Learning Investigations in Maths

Parent Resources

Supporting your child with primary mathematics

Tips for Parents: Helping Your Child Succeed with **Mathematics**

BY CATTARD2017 | JANUARY 15, 2018

BY CATTARD2017 | AUGUST 11, 2021

Darents' Reliefs about Math Change Their Children's Achievement

tive students can change their performance dramatically, and that

Learn math without fear Stanford expert says

that students most effectively learn "math facts" working on problems that they enjoy, rather than [...]

Why a Math Revolution?

There is a math crisis in America, B. middle school, two-thirds of our students will fall behind grade level

6 Ways to Support your Child's Mathematical Development

Available in English and Spanish! Here are 6 ideas for parents/guardians to try, and links to many more resources.

the Atlantic

The Stereotypes About Math That Hold Americans

Speed doesn't matter, and there's no such thing as a "math person."

lo on BBC Radio 4's 'The Educators'

Is our attitude towards maths killing the subject for children? Professor In Booler hallener, a wirtermeart belief in the existence [...]

Stanford | News THE HECHINGER REPORT

Memorizers are the lowest achievers and other Common Core math

Mathematics classes of the past decade have valued one type of math learner, one who can memorize well and calculate []

the Atlantic

100 Percent Is Overrated

People labeled "smart" at a young age don't deal well with being wrong. Life grows stagnant. "Mistakes grow your brain," [...]

Why We Need Common Core Math

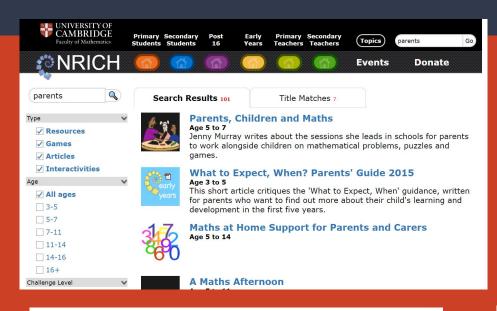
A video made especially for parents and teachers on why we need the common core. It shows some great data f. 1

The Mathematics of Hope Moving from Performance to Learning

A paper by to with some important ideas about mathematics message and the opening of tasks.

How Math Should be Taught In describes what math classroom

should look like in 2 pages that may be useful to give to


About

Resources

Courses

Parent Resources

